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Abstract

Testing strategies for Covid-19 to maximize number of people tested is urgently needed. Recently, it
has been demonstrated that RT-PCR has the sensitivity to detect one positive case in a mixed sample 32
cases [12]. In this paper we propose adaptive group testing strategies based on generalized binary splitting
(GBS) [5] where we restrict the group test to the largest group that can be used. The method starts
by choosing a group from the population to be tested, performing a test on the combined sample from
the entire group and progressively splitting the group further into subgroups. Compared to individual
testing at 4% prevalence we save 74% at 1% we save 91% and at 1% we save 97% of tests. We analyze
the number of times each sample is used and show the method is still efficient if we resort to testing a
case individually if the sample is running low.

In addition we recommend clinical screening to filter out individuals with symptoms and show this
leaves us with a population with lower prevalence. Our approach is particularly applicable to vulnerable
confined populations such as nursing homes, prisons, military ships and cruise ships.

1 Introduction

Testing capacity for COVID-19 is still too scarce to meet the needs to meet global health needs. Confined
are at particular risk for rapid contagion. They may include those who reside in facilities such as prisons,
ships, military units and nursing homes. The goal of this paper is to increase the capacity to identify
asymptomatic carriers of COVID-19 by applying group testing methods. Current practice typically involves
a “one-patient-one-test” strategy. Recently the potential to detect COVID-19 RNA in a mixture of samples
from individuals has been validated [12] using RT-PCR. The method was first devised in 1943 during World
War II to test large groups of US servicemen for syphillis prior to deployment [3]. Now, just as in the WWII
era, large scale testing is necessary.

COVID-19 is a highly contagious disease that can lead to pneumonia, acute respiratory distress syndrome
(ARDS) and death. Clinical symptoms and phyiscal exam features may include fever, cough, shortness
of breath, malaise, lethargy, ageusia, anosmia and gastrointestinal (GI) symptoms. Besides this diseases
potential lethality, it is highly contagious.

With the demonstrated success of group testing using RT-PCR for finding SARS-CoV-2 RNA [12] ,
there is a renewed interest in the practical applications of mathematical group testing algorithms. In [8]
a non-adaptive group testing method and practical applications are explored. We describe adaptive group
testing methods based on generalized binary splitting (GSB)[5]. We provide an algorithmic specification for
subdividing groups and account for the limited test accuracy and the possibility that the an individual’s
sample size constrains the number of tests. We explain how prescreening symptomatic cases and separately
testing them ca dramatically improves the performance. Pre-screening reduces the prevalence in the test
groups, This approach is relevant for large scale populations and particularly for confined groups.
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Figure 1.1: (Image credit: Matthew Heidemann) Our group testing method consists of first clinically screen-
ing out symptomatic individuals. This will lower the prevalence in the test population. Our group testing is
especially effective when we can assume the prevalence is uniform over the whole population. Therefore, it
is especially applicable to confined or cohesive populations. We split the asymptomatic individuals up into
groups for which we mix the samples from each individual and test them. A negative result will confirm many
negative cases. We subsequently divide groups and test the mixtures of samples for positive results. This we
show, conserves the number of tests and, as a result, the time spent testing. Using numerical experiments,
we also show that our methods can be performed without running out of samples from passing through too
many rounds.

2 Application of group tests to confined populations

This application utilizes a primary clinical screening step to ensure that the tested population is composed
of asymptomatic COVID-19 (-) and (+) patients. This ensures the lowest prevalence of disease in the
population and enhances the efficacy of the method.

Clinical screening should first take place in the selected population to screen out as many potential
positive patients as possible before administering the test. All patients with history of cough, shortness of
breath, nausea, gastrointestinal symptoms, fever, malaise, lethargy, recent contact with positive COVID-19
patients, have physical exam consistent with those findings should be segregated out of the population.
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Figure 2.1: Diagram depicting the application of screening.

Clinical screening will decrease the prevalence of COVID-19 carriers in the test population if the prob-
ability of being asymptomatic given COVID-19 (+) is less than the proportion of the population that is
asymptomatic (regardless of COVID-19 (+) or (-)). We demonstrate this by proving the following claim.

Claim. The sub-population not showing any symptoms will have a lower proportion of symptomatic carriers
when the proportion of people not showing any symptoms in our group is less than the estimated proportion
of COVID-19 carriers who are asymptomatic.

We can prove this through a couple of applications of Bayes’ theorem. We refer to the event that an
individual does not show symptoms as “no symptoms”. The event that an individual has symptoms that are
signs of COVID-19 is referred to as “symptoms” regardless of whether they carry the disease. We denote the
event of carrying the COVID-19 virus as “COVID-19”. Then an asymptomatic carrier is referred to as “no
symptoms and COVID-19”. Let P(A) denote the probability of an event A occuring. Written in terms of
probabilities, screening will help when

P(COVID-19|no symptoms) < P(COVID-19).
Re-writing the left side of the inequality, we get

P(COVID-19 and no symptoms)
P(no symptoms)
P(no symptoms|COVID-19)

= ID-19).
P(no symptoms) P(cov 9

P(COVID-19|no symptoms) =




Plo ;y(fgtsoyrfnsrl)&?n\gl}lg) < 1, which is the same as P(no symptoms|COVID-19) <

P(no symptoms). This is the probability of being asymptomatic given that they have COVID-19 for the
population we are testing.

Therefore it is necessary and sufficient for

3 Overview of group test methods

If a population has a low prevalence of COVID-19 then it is likely for groups of individuals to not have any
positive cases. Therefore it is often the case that one test of the mixture of their samples is all that is needed
to determine that they are all negative.

Figure 3.1: An example of a population with low prevalence. For this example only, a red circle represents
a case (+) for COVID-19 and a blue circle represents a case (-) for COVID-19. The rectangles represent
testing a mixture of samples from the individuals in the group. The maximum group size in this example
is 8. A blue frame represents testing (-) for COVID-19 and a red frame represents testing (+). Two of the
group tests of 8 are positive. When this happens, a type of binary search is used to find one positive case.
In this example 32 cases are confirmed either (+) or (-) using 11 tests. Some cases are left un-determined
for future rounds of testing.

Otherwise, a positive result on the combined samples indicates that there are some positive cases. We
are therefore able to design a strategy to use less tests to determine whether each individual is positive or
negative for the disease by testing mixtures of samples from groups.

To sufficiently identify negative cases and positve cases the groups must be large enough to balance find-
ing many negative cases with one test, and locating some positive cases. Step one of the group test method is:

1. A group size is chosen so that the frequency that a group has only (-) cases (figure 3.1)
is roughly equal to the probability we find at least one (+) case in the group.
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Table 3.1: Group size specified for the divide and test method. By DTg we mean to apply divide and test,
using the minimum of g and the group size for divide and test (e.g. DT32 will use a group of size 32 if DT
uses a group of size 64). We study limited group sizes to explore how many tests can be saved depending

on the limitations of the instruments.

If the test of the group’s combined samples is positive, indicating that one of the individuals in the group
is positive, apply a routine of repeatedly dividing the group into subgroups applying tests to the subgroups

until a positive individual is identified. This is step two of the group test method.

2. If the first test is (+), divide the group into two subgroups of equal size. Test the
combined sample from individuals in one subgroup to determine which halve contains some
positive individuals. Repeat this step on the subgroup that contains the positive cases.
This routine is referred to as binary search.
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Figure 3.2: The result of testing the combined samples in the group is positive. Therefore split the group
into two subgroups of equal size. Test subgroup 1. The result is (-). Therefore every case in subgroup 1 is
negative. The (+) cases have to be in subgroup 2. We subgroup 2 into two subgroups and pass down the
labels subgroup 1 and 2. The combined samples from subgroup 1 test positive. Subgroup 2 will not be tested
in this round of binary search, so we return the cases to the test population. Finally split the remaining
subgroup into two individual cases. Testing the first case reveals that they are (-). The second case is then
(+)- In total: 5 (-) cases and 1 (+) case are revealed using 4 tests.

When the test result of the group’s samples is (+) we split the group into two equally sized subgroups testing
one of them to decide if it contains some positive cases or if it consists entirely of negative cases. In the
second situation, the second half must contain positive cases.

Continue the search on the subgroup with positive cases in the same way dividing it into two halves test-



ing the mixed samples from one of the half-subgroups. Repeating this step we are able to find one positive
case. Along the way many groups of several individual are likely to be confirmed negative with a relatively
small number of tests. Any subgroup that was not tested retains its undetermined status and is returned to
the general set of samples to be confirmed positive or negative.

3. Repeat the procedure starting with 1. on the individuals in the population for which
whether they carry the disease has yet to be determined.

In this paper we consider group testing methods that follow two different interpretations of step 1 in the
procedure above: methods with a fixed group size and methods where the group size changes based on the
results of previous tests. Each type of method uses a slightly different definition of prevalence.

Fixed group size

Prevalence is defined as the probability p an individual in the population has COVID-19. For each level of
prevalence we specify a fixed number of individuals to test their combined samples, performing binary search
if it is positive. The fixed group size method we analyze in this paper is divide and test (DT). We also
consider Dorfman’s method as a method to compare the methods against, as well as a simpler alternative
that only ever uses an individuals samples for a maximum of two tets.

Dynamic group size

Prevalence is defined as the count of positive cases in the test population. As testing is carried out, the
confirmed positive and negative cases are set aside are both removed from the undetermined test population.
Therefore, the population and the prevalence changes during the testing process. The group size depends
on both the population and the prevalence. The adaptive group testing method presented in this paper is
generalized binary splitting (GBS).

In addition to studying these two classes of methods, we make modifications to the methods to take into
account limitations of the devices and techniques used to test samples for COVID-19 RNA. Specifically, we
study methods with limited group sizes. These are DT and GBS with maximum group g (DTg and GBSg).
They are defined so that any time either DT or GBS specifies a group size over the capped limit g we take
the group size to be g. To cover a wide range of limits of detection we consider groups of sizes 4,8,16,32 and
64.

4 Fixed group size method: divide and test (DT)
This method is can be thought of as a fixed group size version of the generalized binary splitting method [5].

1. If p > .5 then test each member of the population individually. Otherwise, let a = {logz (% — 1)J

Select a group of individuals G with |G| = 2% and apply one test to G. If it is negative, then we
conclude that the result of each case in G is negative.

2. If G is positive we use binary search to find exactly one case that we can deduce is positive.

3. Repeat the method starting with step 1. on the yet to be confirmed portion of the population.

Note that the =2 ~ %. The median number of positive cases in a group 2¢ is then roughly p x % =1,

therefore the group contains only negative individuals with about the same frequency as it contains at least
one positive individual.

Divide and test, although having fixed group size, can be thought of as a version of Hwang’s generalized
binary splitting for large N. For N large and D positive cases, the status of each case is approximately
independent of the other with a probability of being positive p = %.



5 Dynamic group-size method: Hwang’s generalized binary split-
ting (GBS)

The group testing methods suggested in this paper are based on Hwang’s generalized binary splitting method.
In [5] GSB is designed to find up to D (+) cases in a population containing N individuals. It is described
as follows:

1. If 2D — 2 > N then test each member of the population individually. If 2D — 2 < N set a =
|log, (% —1)]. Take G a group of cases such that |G| = 2% and apply one test to G. If it is negative,
then we conclude that the result of each case in G is negative.

2. If G is positive we use binary search to find exactly one case that we can deduce is positive.

3. Set the population to the set of individuals not determined (+) or (-). We set N to be the new
population size. If we have found a positive case in the last two steps, we take D — 1 to be the new
number of positives in the un-tested population.

This method is extended to populations with a random number of (+) cases by setting the upper limit
on positive cases according a chosen confidence level (i.e. the probability that the number of (+) exceeds
this is very small). In probability terms, if the number of positive cases D is generated acccording to a
probability distribution, and we assume probability ¢ that will identify every positive case, then let D, be
such that P(D < D.) < c¢. Generalized binary splitting is then applied to find at most D, positive cases in
the population.

The setting of Hwang’s paper is group testing for general purposes, including identifying defective parts
or products in addition to determining individuals with a disease.

It is an ethical requirement to determine if each person is (+) or (-) if they are tested for COVID-19.
Therefore GSB is appplied for an upper bound D, of positive cases at a fixed level of confidence c. If exactly
D, positive cases are found, then there with non-zero probability there are some cases that have not been
determined. Otherwise if < D, positives are identified, then we are certain we have found them all and
it will also happen that a positive or negative confirmation was given to each individual by the end of the
testing process.

In the case where there could be more positive cases, we repeat GSB with the same level of confidence ¢
on the remaining population.

Rather than considering the application of a level of confidence as an idiosyncracy of the method, it is
actually a fundamental property of identifying asymptomatic COVID-19 carriers. Asymptomatic positives
cannot be identified without testing them, we can only pick an upper bound on the cases with a high level
of certainty. It might seem preferable to then choose a method that instead prescribes a group-size for each
level of prevalence, such as Dorfman’s method or divide and test, but for those methods the possibility that
we have misjudged the prevalence still needs to be factored in!

6 Confidence bounds on group testing methods

We will apply DT and GBS with groups capped at 4, 8, 16, 32 and 64 samples using two different levels of
confidence.

e GBSg with D5 (i.e. P(D < Dj) = .5). We repeat GBSg at this level of confidence if there are
undetermined cases remaining.

e We apply DTg with the group size 9[log(5-1)]

e GBSg with D g9. For a population generated by a prevalence level p, this will perform worse on average
than the application with D 5, but level of efficiency theoretically guarenteed for GSB [5] will hold with
99% confidence. Therefore, we can be more confident of the algorithms performance.

e For populations of size N generated with prevalence p, we apply DTg at the actual prevalence level

of the population with 99% confidence. That is, we apply DTg with the group size (with ceiling g)

corresponding to p.gg = DJ-\‘;".




For small to medium sized populations, the 99% confidence upper bound is very different from the mean.
The different confidence levels are very close for large N for a constant probability of having COVID-19.
How confident we are needs to be taken into account in this scenario as well because assuming a uniform
probability of having the disease is likely to be too broad of an assumption. There are many different factors
that lead to sub-populations having distinct frequencies of carrying COVID-19 and the certainty about the
prevalence varies as well.

7 Dorfman’s method|3]

We compare the results from DT and GBS methods to Dorfman’s method. Dorfman’s method is as follows:

1. For a the optimal group size b (defined below), apply one test to a group of b cases. If the result is
negative, then conclude that every case in the group is negative.

2. If the result is positive, test each case individually.

If the test result is negative then one test was used for b cases. If it is positive, then b+ 1 tests were used. The
quantity b is chosen to minimize the expected number of tests used to determine the result of one individual
case,

E(#tests)/N = —(1—p)+ %(b +1)(1-(1-p)").

S e

We will use this formulat to compute the expected proportion of tests saved for several different levels of
prevalence to compare to the successor binary search based methods we choose study.

8 Analysis of group testing methods methods !

To evaluate and analyze the performance we assume that the populations are sequences of randomly generated
i.i.d. variables representing cases with the probability of having the disease p. The population is then modeled
by probability distribution with the following parameters.

e N- the size of the population/number of cases
e p- the probability that a case is positive. We refer to this as the prevalence.

e A case is then a bernoulli random variable that is positive with probability p and negative with
probability 1 — p.

e The number of positive cases is then a binomial random variable with N samples and probability p of
a success, we write this as binomial(V, p).

e T—the number of tests needed to determine the status of every case for a population of size N.

Performance is assessed using two measures: the expected percentage of tests saved (compared to individual
testing) and the rate information is gained from applying each test. The proportion of tests used for a
sample population (compared to testing individfually) is the expression of the ratio % The percentage of
tests saved is then 1 — % expressed as a percentage. We define the information rate following suit with the
Definition 1.7 in [2] to be the number of bits gained per test. The information gained is taken to be the
base 2 entropy of the sequence of the random variable of N independent COVID-19 (+) or (-) confirmations,
denoted H (population). Let H(p) = plogyp + (1 — p) log,(1 — p) be the entropy of a bernoulli — p random

variable. Since entropy is additive over finite collections of independent random variables, we have

H(population)  NH(p)
T T

! Please visit https://github.com/cmentus/group-testing/ to find the Jupyter Notebook for all numerical experiments.



In the section 9 we analyze the performance of the group testing methods at a selection of prevalences
for populations of size 100 and 1000. In section 10 we analyze the performance at the .99 confidence upper
bound. This can be thought of as overestimating the prevalence by a large enough amount so that we are
99% sure that the actual number of positive cases falls at or below this level.

In section 11 we analyze the number of rounds of testing each sample goes through. Our results suggest
that not only do group testing methods save tests and time, but they can be done within the realistically
expected amount of usage for each test.

An analysis of the histograms of the number of tests per case from which we compute the average
performances is in the numerical results section after the bibliography (section 14).

9 Performance of group testing methods at different prevalences

For our performance analysis, we sample populations of sizes N = 100,1000 at prevelance levels p = .001,
.01, .02, .03, .04, .05, .1, .15, .2, and .25. We present the mean of 1000 samples and present them in the table
below. For DTg results, some of the entries are left empty. This is because the fixed group size is less than
the capped group size so it would be redundant to list it, and for the performance refer to the nearest entry
to the left. We do not do this for GBS because the group size is adaptive and there is nothing restricting it
from becoming small.

First we assess the performance of DT at its uncapped group size, recording the group-size, the percentage
of tests saved and the information rate.

In each table below we list the percentage of tests saved from employing the group test methods.

N =100 N = 1000
prevalence | GSB4 \ GSBS8 \ GSB16 \ GSB32 \ GSB64 | GSB4 \ GSBS8 \ GSB16 \ GSB32 \ GSB64
.001 74.7% | 86.7% | 92.5% | 95.4% | 96.3% | 74.7% | 87.1% | 93.2% | 96.2% | 97.6%
.01 72.2% | 83.2% | 88.0% | 90.1% | 90.1% | 72.3% | 83.6% | 88.7% | 90.6% | 91.2%
.02 69.0% | 79.2% | 82.6% 83.5% 83.6% | 69.8% 80% 84.0% 84.8% 84.7%
.03 66.6% | 75.1% | 77.9% | 77.9% | T7.8% | 67.3% | 76.3% | 79.2% | 79.1% | 79.1%
.04 64% 71.2% | 73.2% 72.6% 72.6% | 64.8% | 72.8% | 74.5% 74.3% 74.2%
.05 61% | 67.5% 68% 67.6% | 68.1% | 62.3% | 69.0% | 69.8% | 69.8% | 69.5%
1 47.9% | 49.3% | 49.2% 48.7% 48.8% | 49.9% | 51.1% | 50.8% 50.7% 50.6%
15 35.5% | 34.6% | 34.3% | 34.7% | 33.7% | 37.3% | 36.9% | 36.8% | 36.7% | 36.7%
2 23.4% | 22.2% | 21.9% 22.2% 21.9% | 24.3% | 24.1% | 23.9% 24.0% 23.9%
.25 14.7% | 13.9% | 13.6% | 13.0% | 13.7% | 16.3% | 16.2% | 16.0% | 16.0% | 16.0%

Table 9.1: Test saved for GBS method with capped group size. We sample populations at prevalence level
p (left column) for sizes 100 and 1000 and simulate the GBS methods for different capped group sizes. We
sample populations 1000 times each.
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N = 1000
prevalence | DT4 \ DTS \ DT16 \ DT32 \ DT64
.001 74.7% | 87.1% | 93.2% | 96.3% | 97.8%
.01 72.6% | 84.0% | 89.2% | 91.4% | 91.9%
.02 70.3% | 80.6% | 84.6% | 85.6%
.03 67.8% | 77.2% | 80.3% | 80.2%
.04 65.4% | 73.6% | 75.5%
.05 63.0% | 70.2% | 71.1%
1 50.9% | 52.3%
15 38.6%
2 26.2%
.25 17.9%

Table 9.2: We list the performance of divide and test at different levels of prevalence. Divide and test has a
constant group size given the prevalence.

Interestingly, although GBS has theoretical guarentees on the number of tests, DT has better performance
on average.

Dorfman

prevalence | tests saved (%) \ group size

p = .001 93.7% 33
.01 80.4% 11
.02 72.6% 8
.03 66.5% 7
.04 61.6% 6
.05 56.8% 6
.1 40.6% 4
.15 27.2% 4
.2 17.9% 3
.25 8.9% 3

Table 9.3: Dorfman’s method performance for different levels of prevalence. Note that, although Dorfman’s
method is more simple it requires groups more than twice the size to barely exceed the performance of GBS
and DT with group size capped at 16 for prevalence .001 and capped group size at 8 for prevalence .01.

11
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Figure 9.1: Dorfman’s method with group size b takes either % tests to confirm a negative case when it is in
a group of b negatives. If there are some positive cases in the group, in addition to the test on the mixture
of samples from the whole group, a test is applied to each individual in the group. This leads the average
number of tests per individual to be I"”Tl.

10 GBS and DT at 99% confidence

We analyze the effect of picking the prescribed method for a conservatively large estimate on the prevalence.
A larger estimate on the prevalence will still take advantage of the frequent occurence of many consecutive
negative cases. The overestimate we use corresponds to a probability of having less positive cases of .99. We
sample the populations at least 100 times and take the mean of the proportion of tests saved over all samples.
Specifically for DTg applied to populations of 100 and 1000 we generated 100 samples. For GSBg we applied
to populations of size 100 we sampled 1000 times except for GSB16. For GSBg applied to populations of size
1000 we sampled 100 times except for GSB64 we sampled 1000 times. The differences in number of samples
are due to the overall computational expensiveness of simulating GSB and DT.
The mean savings of each numerical experiment are presented in the following table.

12



N =100

prevalence | GSB4 | GSB8 | GSB16 | GSB32 | GSB64 | DT4 | DT8 | DT16 [ DT32 | DT64

.001 74.7% | 86.7% | 92.7% | 95.4% | 96.2% | 74.7% | 86.6% | 92.6% | 95.5% | 97.7%

.01 66.4% | 75.3% | 77.8% | 78.3% | 782% | 72.7% | 84.1% | 88.8% | 88.9% | 88.4%

.02 61.2% | 67.6% | 68.3% | 67.9% | 67.9% | 70.2% | 80.6% | 79.6% | 80.7%

03 56.1% | 60.4% | 60.4% | 60.4% | 60.5% | 67.1% | 76.2% | 77.7% | 76.0%

.04 53.6% | 57.0% | 57.0% | 57.0% | 57.0% | 65.0% | 72.3% | 72.8%

.05 48.5% | 49.7% | 49.8% | 49.7% | 49.7% | 62.6% | 69.7%

1 30.2% | 30.2% | 30.0% | 30.0% | 30.2% | 50.2% | 50.8%

.15 17.6% | 17.6% | 17.6% | 17.6% | 17.6% | 30.6%

2 85% | 85% | 8.6% 8.5% 8.3% | 23.6%

.25 9% 9% 1.1% 1.0% 8% 0.0%

Table 10.1: In this table we sample the DT and GBS methods 1000 times and take the average results for
number of positives less than or equal to D g9. Again, note that we leave out entries from the table for DT
since the optimal group size is smaller than the maximum group size allowed.

N = 1000
prevalence | GSB4 | GSB8 | GSB16 | GSB32 [ GSB64 | DT4 | DT8 | DT16 | DT32 | DT64
.001 74.1% | 86.2% | 92.1% | 94.9% | 96.1% | 74.7% | 87.1% | 93.2% | 96.4% | 97.8%
01 70.6% | 81.2% | 85.6% | 87.0% | 87.0% | 72.6% | 84.1% | 89.4% | 91.6% | 91.3%
.02 67.4% | 76.7% | 79.7% | 79.7% | 79.7% | 70.3% | 80.4% | 84.6% | 84.2%
.03 64.3% | 72.3% | 74.0% | 741% | 74.1% | 68.1% | 77.1% | 80.5% | 80.1%
.04 61.5% | 68.0% | 68.5% | 68.5% | 68.5% | 65.2% | 73.1% | 75.3%
.05 58.4% | 63.7% | 63.7% | 63.7% | 63.7% | 63.3% | 69.8% | 70.1%
1 44.4% | 44.4% | 44.3% | 44.4% | 44.4% | 50.9% | 50.8%
15 30.5% | 30.2% | 30.4% | 30.3% | 30.4% | 38.2%
2 19.2% | 19.1% | 192% | 19.2% | 19.2% | 24.2%
.25 11.5% | 11.4% | 30.4% | 11.3% | 11.3% | 17.8%

Table 10.2: In this table we take the average of 100 or 1000 samples of GBS and DT at population of 1000
and various prevalences at the .99 confidence level D g9. Note that D g9 is closer to D sfor higher populations
(that is % is closer to 1). Therefore the performance is closer to the results depicted in the previous section.

11 Number of uses for each sample

Although demonstrated to be more efficient in test usage, generalized binary splitting requires some samples
to be used at least as many times as the logarithm of initial group size. For maximum group sizes of 32 and
64 this implies that positive cases will be tested at least 6 or 7 times. As is demonstrated by figures 11.1
and 11.2 it is possible for tests to be used more than twice as many times.
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#uses per sample GBS, p=0.001, test saved (%):95.9 #uses per sample GBS, p=0.05, test saved (%):68.6 #uses per sample GBS, p=0.2, test saved (%):22.7
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Figure 11.1: For GBS32 we sample a population of size 10,000 and record the number of times each case is
tested. Note that for prevalence of p = .1% a case at most 5 times in the population. In figure 11.2 where
we perform the same experiment we find cases that are tested up to 9 times. We apply GBS32 to find at
most D g9 (see Section ?7)

#uses per sample GBS, p=0.001, test saved (%):97.2

8000
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#cases

4000

2000

1 2 3 7 8 9

4 5 6
#uses (max=9.0)

Figure 11.2: For GBS64 we sample a population of size 10000 and apply GBS64 with the .99 confidence
level. The histogram for number of times we use each sample.

We see in figure 11.3 that the proportion of cases that are tested many times (more than 6) is very low.
This is evidence that testing the cases indivually when we are running low (if we are limited to 6 uses) adds
up to less than 1% extra tests. If we are able to test a sample more than this many times, individually
testing when we are about to run out effects the efficiency negligibly.
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#uses per sample GBS32 for >1 use, p=0.01 #uses per sample GBS32 for >1 use, p=0.03
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Figure 11.3: We sample a population of size 10000 at various prevalence levels and use GBS32 with D g9 ?7.
We plot the histograms of the number of times postive results and negative results are tested given that they
are tested more than once. Interestingly, sometimes the number of times negative cases are tested seems to
have a larger maximum.

12 Discussion

Gaining knowledge of COVID positive status in asymptomatic carriers is of prime importance in the fight
to contain and eliminate the disease. The group testing strategy will generate certainty and a margin of
safety in confined populations and may be useful in detection of disease burden in geographically dispersed
populations as a mode of surveillance. A key factor in our strategy is the two phase approach that we
propose. Clinical screening of symptomatic patients cuts down the prevalence of Covid-19 in the chosen
asymptomatic test populations.
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Rapid, large scale testing is urgently needed for naval ships and military bases. A recent outbreak upon
the USS Roosevelt has brought this concern to the forefront of military proporities [7]. Recently Italian
prisoners have rioted rioting due to lack of testing[9]. 300 prisoners have been released from NYC prisons
due to concern for spread of coronavirus [10]. Nursing homes have been sites of extensive outbreaks [11].

In Europe, group-testing is currently being considered as a possible important step to totally cut-off
the possibility of a resurgence as our other methods succeed in driving the rate of infection down [4]. In
Luxembourg, massive testing to find asymptomatic carriers is underway and group testing can fill in the
gaps in testing asymptomatic positive cases. In Hungary, there are plans to potentially test every person in
the entire country using group-tests [6].

In the current phase of the pandemic, testing for the presence of COVID-19 targeted antibodies using viral
antigens such as the ELISA assay are being used to test for both exposure and immunity. It is an important
topic to explore how antibody tests can be most effectively used in tandem with PCR tests leading to the
largest possible testing capacity. Antibody tests are important especially to discover whether first responders
are potentially exposed and immune to the disease. As antibody tests are not yet produced enabling point
of care usage, there is a scarcity of antibody testing capacity just as there is PCR testing capacity. Is it
feasible to apply group testing methods to antibody assays?

Screening an asymptomatic population is challenging but important. Sensitivity of tests is paramount
but also utilization of resources must be efficient. This study proposes a statistically valid mathematical
model to optimize number of tests performed On chosen populations. The future direction of our work will
require clinical validation with real world application of this group testing strategy.

The clinical screening of symptomatic patients out of our population is helpful but it will also make
detecting virus in asymptomatic people potentially tougher because of the chosen viral load. Current RT-
PCR methods are standard but have a concerning false negative rate in symptomatic patients [1]. This may
be further exacerbated in asymptomatic patients. Future studies may explore or consider the use of more
sensitive techniques including DDPCR and addition of other sampling techniques such as fecal specimens
and perhaps advanced imaging such as chest CT scan.

Based on the above evidence it is clear that a comprehensive strategy is necessary to test all asymptomatic
people. This strategy will uncover the hidden silent carriers of disease.

Group testing has the chance for saving tests, while giving an exit to revert to individual testing if there
are more cases than estimated. These strategies are not necessarily the theoretical optimums. Nevertheless,
by our calculation and numerical simulations they have the power to cut down the number of tests used.

13 Conclusion

The group testing method is applicable to confined populations from both a clinical and mathematical stand
point. We can clinically screen confined groups to decrease the prevalence in a predictable way. This method
allows each patient in the population to get a test result. We explore adaptive and non-adaptive strategies
for group testing for COVID-19, therefore we add adaptive and binary search based non-adaptive strategies.
Both perform well even when we restrict the size of the group based on the sensitivity of RT-PCR.

We test the performance of two algorithms: divide and test and generalized binary splitting. For pop-
ulations of size 100 and 1000 with each case being positive independent of one another with probability p,
we find that both methods save many tests. In fact, even when we restrict the size of the groups they make
substantial savings. For example at prevalence .001 and group sizes capped at 16, both DT16 and GSB16
are capable of outperforming Dorfman’s method, that requires a group size of 33 for optimal performance.
For a population of 1000 and confidence level .99, the DT16 and GBS16 also have a similar performance to
Dorfman’s method at .001 where Dorfman’s method is chosen as if we knew the exact prevalence.

We find that DT outperforms GSB on average even though GSB in theory uses close to optimal number
of tests for a known fixed number of (+) cases (bounded above by #tests — 1 + information lower bound).
This indicates that non-adaptive binary search methods have the potential to save many tests. It is possible
that GSB is more generally applicable to populations that cannot be thought of as being generated

Since samples can be divided frozen and stored for continuous use we mathematically analyze how many
divisions we have to use for each sample. We find that testing individually when the sample is about to
run out does not subtract substantially from the savings. We demonstrate that for a group size of 32 the
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generalized binary search on 10000 cases uses the same sample more than 6 times for < 1% of all cases.
Therefore, applying a test individually to samples when they are running low is a viable way to save many
tests while not depleting material from one person’s sample.
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14 Numerical results

14.1 GBS and DT at different levels of prevalence (.5 confidence)

GBS p=0.1 tests saved(%):49.3% GBS p=0.15 tests saved(%):34.6%

1000 1000

800 800

w 600 w 600
] ]
[%)] [%)]
© ©
(9] (9]

# 400 400

200 200

° %

0.4 0.5 0.6 0.7 0.8 0.9 .5 0.6 0.7 0.8 09 1.0 1.1
#tests per case #tests per case

Figure 14.1: Histograms for GSB with group size capped at 8 for N = 100 at prevalence levels p = .1 and
p = .5 sampled 1000 times.
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DT p=0.05 tests saved(%):69.6% GBS p=0.05 tests saved(%):49.7%
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Figure 14.2: Distribution of tests per case for DT32 and GBS32 on populations of size 100 with prevalence
of .5. The distribution of GBS32 is much more concentrated at .5 tests per case.
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Figure 14.3: Distribution of tests per case for DT32 and GBS32 on populations of size 1000 with prevalence
.05. Again, the performance of GBS is tightly concentrated at its mean.
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GBS p=0.01, tests saved (%):90.6% DT p=0.01 tests saved(%):91.4%
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Figure 14.4: Tests per case. Left : DT32 on a population of size 1000. Right: GBS32 on a population
of 1000. The prevalence of both populations is p = .01. The results are for DT32 and GBS32 performed
assuming the .5 confidence upper bound.

14.2 GBS and DT at different levels of prevalence with .99 confidence
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Figure 14.5: Histograms of the number of tests per case for GSB32 with population of size 1000 sampled
1000 times.
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GBS p=0.001 tests saved(%):96.1% 1000 GBS p=0.05 tests saved(%):63.7% GBS p=0.1 tests saved(%):44.4% 1000 GBS p=0.25 tests saved(%):11.3%
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Figure 14.6: Histograms of the number of tests per case for populations of size 1000 at confidence level .99
for both GBS and DT. The maximum group size is 64. For GSB we sampled 1000 populations, for DT we
sampled 100 populations. Note that the spread of the DT algorithm is much wider and has many cases that
need a much lower number of tests than GSB. The small bars in GSB are caused by the 1% chance of not
identifying all of the cases in one run and so repeating the process on the rest of the population.
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